I will define here a living Oligomycin A clinical trial organism as an entity formed by the functional integration of several “organs”, corresponding to the structure and functions of Lwoff’s definition. By analogy with multicellular organisms that are composed of several ABT-263 solubility dmso organs (skin, liver, brain and so on), unicellular
organisms can be defined as composed of several molecular machines and/or structures (metabolic networks, ribosomes, replicons, capsid, membranes and so on). A living organism can thus be defined as: “a collection of integrated organs (molecular machines/structures) producing individuals evolving through natural selection”. The simplest viruses encode two different “organs”, a replicon, allowing genome multiplication, and a capsid, i.e. a complex structure allowing not only to protect the viral genome in the extracellular space, but also involved in the entrance and exit mechanisms of virions in and out of the cell. All viruses encode sophisticated mechanisms to divert the organs of the infected cells, such that these organs become part of the viral organism during infection. One can try to use our definition of organisms to approach the problem of the origin of life itself. Modern cells descending from LUCA and their viruses are all complex organisms, and LUCA 3-Methyladenine nmr itself has been the product of a long history (for a recent
review, see Forterre and Gribaldo 2007). Life
indeed Cell press already existed before the emergence of capsids and ribosomes. This is the reason why I included the ancestors of LUCA in my definition of life. At some point one should have to imagine the nature of primitive cells to include their features in our definition. The precise moment when life originated corresponds to the appearance of the first individuals formed by at least two integrated molecular organs (possibly a primitive metabolic network and a membrane) co-evolving through natural selection. Although the definition of life is a philosophical question, the choice of a definition has a great impact in the definition of scientific programs. The definition of life proposed here implies that the goal of biology should be to explore and understand exhaustively (via combining reductionist and integrative approaches) the mode of existence of living organisms and to understand their history (evolution being the cornerstone of biology). Above all, a program to study “the origin of life” should focus on looking, theoretically and experimentally, for the mechanisms that led to the emergence of the first living organisms on our planet. Acknowledgments I thank Michel Morange for the invitation to participate to the 2008 meeting on life definition in Paris. I am grateful to David Prangishvili, Didier Raoult and Simonetta Gribaldo for fruitful discussions.