“Genomic imprinting is an epigenetic marking of genes in t


“Genomic imprinting is an epigenetic marking of genes in the parental germline that ensures the stable transmission of monoallelic gene expression patterns in a parent-of-origin-specific manner. Epigenetic marking

systems are thus able to regulate gene activity independently of the underlying DNA sequence. Several imprinted gene products regulate cell proliferation and fetal growth; loss of their imprinted state, which effectively alters their dosage, might promote or suppress tumourigenic processes. Conversely, global epigenetic changes that underlie tumourigenesis might affect imprinted gene expression. Here, we review imprinted genes with regard to their roles in epigenetic predisposition to cancer, and discuss acquired epigenetic changes (DNA methylation, histone modifications and chromatin conformation) either as a result of cancer or as an early event in neoplasia. We also address recent work Tubastatin A research buy showing

the potential role of noncoding RNA in modifying chromatin and affecting imprinted gene expression, and summarise the effects of loss of imprinting in cancer with regard to the roles that imprinted genes play in regulating growth signalling cascades. Finally, we speculate on the clinical applications of epigenetic drugs in cancer.”
“Salt tolerance of PND-1186 mouse Arabidopsis knockout mutant with T-DNA insertion in ASN2 gene encoding asparagine synthetase (AS, EC 6.3.5.4) (asn2-1) was investigated. Wild-type Arabidopsis Co10 and asn2-1 mutant were grown for one month by hydroponic culture and subjected to 100 mM NaCl stress for a short time from 6 to 24 h. The salt treatment decreased chlorophyll and soluble protein contents, and increased ammonium level in the asn2-1 leaves. The salinity induced ASN1 mRNA level in the wild-type and asn2-1 leaves. By contrast, the salt treatment inhibited the transcript and protein levels of chloroplastic glutamine synthetase 2 (GS2, EC 6.3.1.2)

in selleck chemical the wild-type and asn2-1 leaves. Increase in asparagine and proline contents in response to the salt treatment provides evidence for the role of asparagine as a prevailing stress responding amino acid. Glutamate dehydrogenase (NADH-GDH, EC 1.4.1.2) exhibited a slight increase in the alpha-subunit and beta-subunit in the wild-type line and the asn2-1 line, respectively under the salinity, whereas its in vitro aminating activity in the wild-type leaves was not affected. The results indicate that the asn2-1 mutant was impaired in nitrogen assimilation and translocation under salt treatment. (C) 2011 Elsevier Masson SAS. All rights reserved.”
“Mutation bias in prokaryotes varies from extreme adenine and thymine (AT) in obligatory endosymbiotic or parasitic bacteria to extreme guanine and cytosine (GC), for instance in actinobacteria. GC mutation bias deeply influences the folding stability of proteins, making proteins on the average less hydrophobic and therefore less stable with respect to unfolding but also less susceptible to misfolding and aggregation.

Comments are closed.