Furthermore, core fucosylation is essential for integrin-mediated

Furthermore, core fucosylation is essential for integrin-mediated cell migration and signal transduction and plays a key role in the interaction between cells and extracellular matrix, thus affecting tumor metastasis. E. W. Easton et al [13] purified α5β1 integrin from human placenta and α3β1 integrin from the uterine epithelial cell

line, HCV29, and demonstrated that both integrins were more than 50% fucosylated. Zhao et al [14] found that knockout of the α1,6-fucose transferase gene (FT8) could prevent integrin α3β1-mediated cell migration and cell growth signals, suggesting that core fucosylation is required for the functions of integrin α3β1. Lewis y antigen is an oligosaccharide containing two fucose molecules and falls into the A, B, H, and Lewis blood type families. The role of Lewis y antigen as a cancer-associated

antigen in tumorigenesis and development gradually arouses more concern. We have previously demonstrated that the Lewis y antigen Alvespimycin nmr is a part of the α5β1 and αvβ3 structures and high expression of Lewis y antigen and integrins α5β1 and αvβ3 can enhance the proliferative and adhesive abilities of cells [6, 15]. Furthermore, we have shown We have also previously shown that cell lines and clinical ovarian cancer specimens exhibiting increased expression of Lewis y antigens in integrins α5β1 and αvβ3 are more likely to exhibit a malignant phenotype [6, 15, 16]. Our studies have also shown that Lewis y antigen can increase the ability of α5β1 4SC-202 and αvβ3 to bind their ligands, fibronectin (FN) and vitronectin (VN), thereby increasing the cells’ resistance to platinum drugs by enhancing cellular adhesion [6, 15, 17]. On the basis of this body of work, we BIBF 1120 ic50 retrospectively analyzed the expression of Lewis y antigen and integrin αvβ3 in

Dimethyl sulfoxide the tissue specimens of patients resistant to platinum drugs and investigated their relationship with drug resistance. We found the rates of expression of Lewis y antigen and αv integrins in the resistant group were significantly higher than those in the sensitive group (P < 0.05); however, the expression rate of integrin β3 in the two groups was not significantly different. Multivariate analysis showed that the expression of Lewis y-antigen and integrin αv and the clinical stage of ovarian cancer were both independent drug resistance-related risk factors, suggesting that the detection of Lewis y antigen and integrin αvβ3 could play an important role in the prediction of ovarian cancer patients’ drug resistance, prognosis, and outcome. Correlation analysis showed that Lewis y antigen and integrin subunits αv and β3 in ovarian cancer tissues were highly expressed in ovarian cancer cells and their expression levels were positively correlated with each other. Dual-color immunofluorescence labeling indicated that Lewis y antigen and integrin αvβ3 were co-localized in ovarian cancer tissues, further confirming their correlation of expression.

Comments are closed.