Fluorescence microscopy was carried out with a Spot insight camera (model no. 3.1.0; Diagnostic Instruments Inc, Sterling Heights, MI) mounted over an Axiovert S100 microscope (Zeiss, Göttingen, Germany). For image acquisition, Meta Imaging Series 6.1 imaging software (Universal Imaging Corporation, Downington, PA) was used. Dinaciclib chemical structure Cell lysates of 1 × 106 immature DCs were mixed with loading buffer (Roth, Karlsruhe, Germany), heated for 5 min at 95°, and subjected
to SDS-PAGE on a 10% polyacrylamide gel with 0·1% SDS using standard procedures (constant voltage at 200 V; 100 μg protein/lane). Proteins were blotted onto polyvinylidenfluoride membrane (Millipore, Bedford, MA) using a semidry blotting unit (Trans-Blot SD; Bio-Rad, München, Germany) in a Tris/Glycin buffer for 35 min at 2·5 mA/cm2. After transfer, the membrane was blocked in blocking buffer (PBS containing 0·1% Tween-20 and 5% non-fat dry milk powder) overnight at 4°. For detection see more of actin or NF-κB, the membrane was incubated
with horseradish peroxidase (HRP)-conjugated mouse anti-human actin mAb (Santa Cruz Biotechnology) at a dilution of 1 : 2000 in blocking buffer for 2 hr or with mouse anti-human phosphorylated NF-κB p65 mAb (BD Biosciences) at a dilution of 1 : 500 for 2 hr and thereafter with HRP-conjugated goat anti-mouse IgG (Santa Cruz Biotechnology) at a dilution of 1 : 5000 for 90 min. Blots were developed using chemoluminescence (Roti-Lumin; Roth). Student’s t-test was employed to test the statistical significance of the results; P ≤ 0·05 was considered significant. First, we analysed
the internalization of different concentrations Adenosine triphosphate of the FITC-conjugated allergens OVA and AGE-OVA by immature DCs at different time-points. In general, uptake of allergen was increased after application of higher allergen concentrations and time duration. The internalization of FITC-AGE-OVA was significantly enhanced compared with the internalization of FITC-OVA after 1 and 4 hr using the optimal concentration of 10 μg/ml allergen (P ≤ 0·05; Fig. 1a). In order to investigate and characterize the mechanisms of internalization of the allergens OVA and AGE-OVA by immature DCs, inhibitors were used to block the receptor-mediated antigen uptake (mannan and poly I) or to block macropinocytosis (DMA).25–27 All inhibitors were added 30 min before application of the allergen FITC-OVA or FITC-AGE-OVA. Figure 1(a,b) shows that the uptake of allergens was significantly reduced (P ≤ 0·01) by all inhibitors at each examined time-point. The uptake of FITC-OVA and AGE-OVA was completely blocked by mannan, poly I and DMA after 10 min and 1 hr. In the presence of the inhibitor mannan or poly I, FITC-AGE-OVA was taken up at a reduced rate after 4 hr, while the uptake of OVA was still completely blocked (P ≤ 0·05).