coli (Figure 7). With amino acid supplementation, sizes of the ZOI reduced for Selleckchem Talazoparib both the wild type and the ΔarcA mutant E. coli, and the difference in the sizes of the ZOI between wild type and ΔarcA mutant E. coli diminished with amino acid supplementation (Figure 7). We tested single amino acids and combinations of various amino acids, and none of the combinations tested was
able to complement the susceptibility of the ΔarcA mutant E. coli as the total amino acids (data not shown). Figure 7 Amino acid complementation increased the resistance of E. coli to H 2 O 2 and reduced the difference in H 2 O 2 resistance between the wild type and ΔarcA mutant E. coli. Resistance of wild type (diamond) and the ΔarcA mutant E. coli (square) to H2O2 was assayed by the ability to grow in the presence of H2O2 and more resistant bacteria show a smaller diameter of inhibition. Various volumes of 20 mM amino acid solution was spread onto each M9 minimal medium plate containing approximately 1 × 106 c.f.u. wild type or ΔarcA mutant E. coli and a paper disc of 1/4″” with 10 μl of 30% H2O2 was
added to the center of each plate. Zone of inhibition {Selleck Anti-infection Compound Library|Selleck Antiinfection Compound Library|Selleck Anti-infection Compound Library|Selleck Antiinfection Compound Library|Selleckchem Anti-infection Compound Library|Selleckchem Antiinfection Compound Library|Selleckchem Anti-infection Compound Library|Selleckchem Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|buy Anti-infection Compound Library|Anti-infection Compound Library ic50|Anti-infection Compound Library price|Anti-infection Compound Library cost|Anti-infection Compound Library solubility dmso|Anti-infection Compound Library purchase|Anti-infection Compound Library manufacturer|Anti-infection Compound Library research buy|Anti-infection Compound Library order|Anti-infection Compound Library mouse|Anti-infection Compound Library chemical structure|Anti-infection Compound Library mw|Anti-infection Compound Library molecular weight|Anti-infection Compound Library datasheet|Anti-infection Compound Library supplier|Anti-infection Compound Library in vitro|Anti-infection Compound Library cell line|Anti-infection Compound Library concentration|Anti-infection Compound Library nmr|Anti-infection Compound Library in vivo|Anti-infection Compound Library clinical trial|Anti-infection Compound Library cell assay|Anti-infection Compound Library screening|Anti-infection Compound Library high throughput|buy Antiinfection Compound Library|Antiinfection Compound Library ic50|Antiinfection Compound Library price|Antiinfection Compound Library cost|Antiinfection Compound Library solubility dmso|Antiinfection Compound Library purchase|Antiinfection Compound Library manufacturer|Antiinfection Compound Library research buy|Antiinfection Compound Library order|Antiinfection Compound Library chemical structure|Antiinfection Compound Library datasheet|Antiinfection Compound Library supplier|Antiinfection Compound Library in vitro|Antiinfection Compound Library cell line|Antiinfection Compound Library concentration|Antiinfection Compound Library clinical trial|Antiinfection Compound Library cell assay|Antiinfection Compound Library screening|Antiinfection Compound Library high throughput|Anti-infection Compound high throughput screening| was measured after overnight incubation and plotted against the volume of amino acid supplementation. At least three experiments were performed, and results from a representative experiment performed in triplicates are shown. Error bars indicate standard deviation and sometimes fall within the data label..
Antibiotic that inhibits protein synthesis increased susceptibility of E. coli to H2O2 To test if protein synthesis is important for bacterial survival and if protein synthesis inhibition is detrimental to bacteria under reactive oxygen stress, we assayed the resistance of E. coli to H2O2 in the presence of chloramphenicol, an antibiotic that inhibits peptide bond formation and hence protein synthesis. Without H2O2 or antibiotic, wild type E. coli grew approximately 2log10 during 6 hours of incubation (Figure 8, left half, open bar). Hydrogen peroxide was bactericidal and the bacterial concentration decreased for over 1log10 (Figure 8, left half, Methane monooxygenase diagonally-hatched bar). Supplementation of HIF inhibitor chloramphenicol alone prohibited bacterial proliferation and the bacterial concentration decreased slightly (Figure 8, left half, vertically-hatched bar). Incubation in the presence of both H2O2 and chloramphenicol was more detrimental to E. coli than either H2O2 or chloramphenicol alone, and the bacterial concentration decreased by nearly 4log10 (Figure 8, left half, cross-hatched bar). This indicates that chloramphenicol enhanced the bactericidal activity of H2O2. To determine if this enhanced bactericidal activity is due to the bacteriostatic activity of chloramphenicol, we tested the effect of ampicillin, an antibiotic that inhibits the bacterial cell wall synthesis, in the same assay.