Appl Phys Express 2011, 4:115003.CrossRef 25. Hong IH: Self-organization
of mesoscopically-ordered parallel rare-earth silicide nanowire arrays on Si(110)-16 × 2 surface. In Nanofabrication. Edited by: Masuda Y. Rijeka: InTech; 2011:199–216. 26. Mizuno T, Sugiyama N, Tezuka T, Moriyama Y, Nakaharai S, Takagi SI: (110)-surface strained-SOI CMOS devices. IEEE Trans Electron Dev 2005, 52:367.CrossRef 27. Teramoto A, Hamada T, Yamamoto M, Gaubert P, Akahori H, Nii K, Hirayama M, Arima K, Endo K, Sugawa S, Ohmi T: Very high carrier mobility for high-performance CMOS on a Si(110) surface. IEEE Trans Electron Dev 2007, 54:1438.CrossRef GSK2118436 solubility dmso 28. Neophytou N, Kosina H: Hole mobility increase in ultra-narrow Si channels under strong (110) surface confinement. Appl Phys Lett 2011, 99:092110.CrossRef 29. Hong IH, Yen SC, Lin FS: Two-dimensional self-organization of an ordered Au silicide nanowire network on a Si(110)-16 × 2 surface. Small 2009, 5:1855.CrossRef 30.
Hong IH, Liao YC, Yen SC: Self-organization of a highly integrated silicon nanowire network on a Si(110)-16 × 2 surface by controlling domain growth. Adv Funct Mater 2009, 19:3389.CrossRef 31. Packard WE, Dow JD: Si(110)-16 × 2 and Si(110)-5 × 1 surface reconstructions: Stretched-hexagon face-centered adatom model. Phys Rev B 1997, 55:15643.CrossRef 32. An T, Yoshimura M, Ono I, Ueda K: Elemental structure in Si(110)-“16 × 2” revealed by scanning tunneling microscopy. Phys Rev B 2000, 61:3006.CrossRef 33. Yamamoto Y, Sueyoshi T, Sato T, Iwatsuki M: High-temperature scanning tunneling Bucladesine microscopy study of the ’16 × 2’ ⇔ (1 × 1) phase transition on an Si(110) surface. Surf Sci 2000, 466:183.CrossRef 34. Kang PG, Jeong H, Yeom HW: Microscopic mechanism of templated self-assembly: Indium metallic atomic wires on Si(553)-Au. Phys
Rev B 2009, 79:113403.CrossRef 35. Kirakosian A, McChesney JL, Bennewitz R, Crain JN, Lin JL, Himpsel FJ: One-dimensional Gd-induced chain structures on Si(111) surfaces. Surf Sci 2002, 498:L109.CrossRef 36. Liu BZ, Nogami J: A scanning tunneling microscopy study of dysprosium silicide nanowire growth on Si(001). J Appl Phys 2003, 93:593.CrossRef 37. Evodiamine An T, Yoshimura M, Ueda K: Rearrangement of up-and-down terrace in Si(110) “16 × 2” induced by Sn adsorption. Surf Sci 2005, 576:165.CrossRef Competing interests The authors declare that they have no competing interests. Authors’ contributions IHH designed the project of experiments and drafted the manuscript. YCL and YFT carried out the growth of CeSi x nanowires and STM measurements. All authors read and approved the final manuscript.”
“Background Growing global energy demand and increasing concern for climate change have aroused the Entinostat in vitro interest in new technologies to harness energy from renewable sources while decreasing dependence on fossil fuels [1, 2].