35 In another development, non-hygroscopic and crystal
colored fractions from S. oleosa selleck products were secluded and it was found that the colored fractions were stable against microbial actions at ambient temperatures. 36 In a recent study,7 two triterpenoids, namely taraxerone and tricadenic acid A were isolated from the outer bark and preliminary study on their antimicrobial activities were done against five different fungal pathogens namely Colletotrichum camelliae, Fusarium equiseti, Alternaria alternata, Curvularia eragrostidis, Colletotrichum gloeosporioides by in vitro antifungal assay 37 and 38 and against four bacterial pathogens namely Escherichia coli, Bacillus subtilis, S. aureus and Enterobacter by antibacterial assay. It was found that both taraxerone and tricardenic acid A had prominent activities against the fungal and bacterial pathogens. On a comparative basis, it was noted that taraxerone showed Selleck Staurosporine better results than tricardenic acid A on all microorganisms. Taraxerone showed activity which could be compared to Bavistan against C. gloesporiodes and C. camelliae. Tricardenic acid A on the other hand showed activity comparable
to Ampicillin against E .coli and Enterobacter. The study showed great scope of utility in making of antimicrobial drugs. 6 The depletion of the conventional petroleum resources has become a problem of major concern in recent years. Extensive research is going on to find an alternative fuel. Since vegetable oils have properties similar with that of diesel, they are replacing diesel in the field of commercial transportation and agricultural machinery. But the direct use of vegetable oil is having adverse effects on the combustion engine. Therefore, these vegetable very oils are converted to biodiesel.
Blending, emulsification, thermal cracking, and trans-esterification are the few techniques used for the conversion of crude vegetable oil into biodiesel. At present, biodiesel is produced by sunflower oil, palm oil and soybean oil by trans-esterification process.39 These oils due to their non-toxic, biodegradable and renewable nature, have gained a lot of attention by the researchers. Cetane number for biodiesel is higher than that of petroleum. Moreover, biodiesel does not contain aromatic components. The emission of carbon monoxide, hydrocarbon and particulate matter is also less as compared to that of diesel fuel. High cost of the above mentioned oils is the basic disadvantage associated with them.40 Hence, the non-edible type of oils yielded from trees such as mahua, sal, linseed, castor, karanji, neem, rubber, jatropha, kusum, cashew, restaurants waste oils and greases along with animal fats are best suited for the production of biodiesel, for instance, S.