A second major reason for conversion from LDR to HDR is reduced hospitalization. For each LDR patient of around one week of hospitalization is required, whereas, with HDR, this can be reduced to a maximum of one day. In many countries, hospitalization of patients is very expensive and methods to check details reduce this cost are encouraged. In others, the availability of hospital beds is a problem, especially beds in rooms suitably placed or shielded for LDR brachytherapy. There is also the problem of morbidity due to the long periods of bed-rest associated with LDR treatments. One concern with LDR
intracavitary Selleckchem Lazertinib brachytherapy is the stability of positioning of the applicators during the long periods of treatment. Dose calculations are performed soon after the applicators are inserted and before they are loaded. On the few occasions that a second dosimetric study has been performed on treatment completion,
this assumption has been shown to be erroneous. For example, a recent study of data from five institutions where dose distributions have been determined both at the VX-809 mw beginning and at the end of an intracavitary application with LDR has demonstrated that ‘hot-spot’ dose rates to bladder and rectum increased during treatment at an average rate of 7% and 19% respectively, with negligible change in the dose rate to Point A [47]. Our results comparing late rectal and bladder complications in patients treated by HDR brachytherapy to LDR brachytherapy show that there is no difference between these two techniques. Similar probability of late complications in rectal, bladder or small intestine was observed in both groups (Table 4). Theoretically, HDR involves a greater probability of late effects for a given level of tumor control; however, the fractionation of HDR intracavitary brachytherapy appears to offset this difference in tumor and normal tissue effects caused by an increase in dose rate. Despite its radiobiological disadvantages mentioned by Eifel [48], the possibility of optimizing dose distribution and the lesser chance of applicator displacement
seem to outweigh these disadvantages. Furthermore, the variation of dwell time with the single stepping source permits an almost infinite variation on the effective source strength and source positions, Casein kinase 1 which allows for greater control of dose distribution and potentially less morbidity [25]. None of the RCTs in the literature show a higher incidence of late complications in patients with cervix cancer treated with HDR brachytherapy compared to those treated with LDR. In our meta-analysis, incidence of lower 5-year rectal complication in patients from the HDR group was probably the result of the relatively low dose delivered to the rectum with the HDR brachytherapy fractionation used. In LDR brachytherapy, the total rectal dose was commonly limited to 70 Gy.