Neutrophils are the more relevant cell type with specific recogni

Neutrophils are the more relevant cell type with specific recognition binding sites for LXA4 and 15-epi-LXA4 [11], and the signalling evoked by LXs in these cells has been suggested to be through phospholipase D (PLD) activation, arachidonic acid release, presqualene diphosphate (PSDP) increase and phosphorylation check details of lymphocyte-specific protein 1 (LSP-1) (reviewed

in [12]). LXA4 and 15-epi-LXA4, as well as their stable analogues, bind with high affinity to the GPCR formyl peptide receptor 2/LXA4 receptor (FPR2/ALX) (also known as formyl peptide receptor-like 1 (FPRL1) [13]. Several reports have shown the role of FPR2/ALX receptor in triggering the anti-inflammatory and pro-resolution properties associated with LXs. Deficiency in the FPR2/ALX receptor in mice decreases the ability of LXA4 to dampen inflammation in vivo [14, Sotrastaurin order 15], whereas over-expression of the human

LX receptor in mice enhances LX-mediated resolution of inflammation [16]. Of interest, in a heterodimer model using BLT1/FPR2/ALX chimera, the activation of each GPCR is mediated by the individual agonist binding to each subunit discarding transactivation mechanisms [17]. In humans, up-regulation of neutrophil FPR2/ALX expression has been observed after low-dose aspirin administration in acute inflammation [18]; most recently the promoter for FPR2/ALX has been identified, and LXA4 has shown to enhance both promoter activity and receptor expression in vitro [19]. Besides the anti-inflammatory properties described for FPR2/ALX, the receptor can also mediate proinflammatory actions, depending on the ligand characteristics (reviewed in [12]). Bioactive lipid mediators as well as specific small peptides/proteins, such as major histocompatibility complex (MHC) binding peptide and its surrogate MMK-1, and a photolytic product of the

acute phase response, serum amyloid protein A (SAA), interact in vitro with the same FPR2/ALX receptor. Opposite to lipid ligands not (e.g. LXs and 15-epi-LXs) that function as anti-inflammatory mediators, peptides are reported to stimulate calcium mobilization and neutrophil migration in vitro (reviewed in [12]). In addition to FPR2/ALX, 15-epi-LXA4 has also been described to bind to cysteinyl leukotriene receptor 1 (CysLT1) and competes for this receptor with equal affinity as the natural CysLT1 ligand leukotriene D4 (LTD)4 [20], suggesting a double role for 15-epi-LXA4 on CysLT1 signalling as well as on FPR2/ALX-regulated neutrophil migration and function. Of interest, the MK-571 leukotriene modifier drug with a related structure to montelukast (MK-476), a potent and selective CysLT1 antagonist used widely as an oral treatment of persistent asthma [21], has been described to bind to both FPR2/ALX and CysLT1 [20], suggesting the potential double function on both receptors.

Comments are closed.