As in so many areas where canine rabies is enzootic, a national s

As in so many areas where canine rabies is enzootic, a national system of diagnostic evaluation and reporting is required, together with surveillance

initiatives to measure the true impact of the disease (Dodet et al., 2008 and Ly et al., 2009). Many island nations have succeeded in eliminating click here rabies, but some still struggle with the disease. This is most evident where deficiencies in the veterinary sector preclude coordinated control and prevention efforts. One such area is the Philippines, where rabies remains a threat to the human population (Estrada et al., 2001). A recent retrospective study in Manila highlighted the difficulty of assessing suspected rabies patients in a resource-limited setting, and concluded that the true disease burden may be 10-50% higher than reported (Dimaano et al., 2011). Together with Tanzania and Kwa-Zulu Natal in South Africa, the Philippines has been targeted for new initiatives by the Global Alliance for Rabies Control and the Bill and Melinda Gates Foundation, which PF-01367338 nmr aim to demonstrate the feasibility of eliminating canine rabies in a resource-limited setting (Anonymous, 2008, Alliance for Rabies Control, 2012, WHO, 2010 and WHO, 2013). Although networks of rabies experts exist in Asia, their resources are limited; input

from regional and national public health authorities will be required to increase their impact. The Asian Rabies Expert Bureau (AREB), founded in 2004, is an informal network of experts from 12 countries, which aims to eliminate human rabies deaths from Asia. Using the goals of the AREB as a framework, and with guidance from the WHO, several Asian countries have resolved to eliminate human rabies by 2020. Achieving this goal will require raising awareness, educating the public and new reporting and surveillance initiatives. To support country-based initiatives aimed at increased rabies awareness, the AREB recently surveyed some 4000 animal bite victims from eight countries, and found that the situation of such patients could be markedly improved through

education on appropriate wound care and timely consultation with a rabies prevention center (Dodet et al., 2008) However, the nearest primary health centre is often prohibitively distant, and its medical staff are unlikely to have Acyl CoA dehydrogenase access to a diagnostic laboratory or be able to provide PEP. Additional resources are clearly required (Estrada et al., 2001 and Matibag et al., 2009). A similar network, the Middle East and Eastern Europe Rabies Expert Bureau (MEEREB) network that was established in 2010, has improved regional collaboration (Aylan et al., 2011). Surveillance and reporting of rabies in the Middle East is variable, with many Middle East countries collating and reporting human rabies cases, but few reporting animal rabies (Aylan et al., 2011 and Seimenis, 2008).

78, p =  08), a significant effect on the probability of regressi

78, p = .08), a significant effect on the probability of regressing into the target (z = 4.65, p < .001) and marginal effect on the probability of regressing out of the target (z = 1.94, p = .05). The only significant

interactions between task and our manipulations of frequency and predictability were on regressions into the target (frequency items: z = 2.63, p < .01; predictability items: z = 2.36, p < .001); all other interactions were not significant (all ps > .17). In addition to the analyses reported in Section 2.2.2.1, we tested whether the interaction in the frequency stimuli was significantly different from the null interaction in the predictability stimuli (i.e., the three-way interaction) PLX-4720 supplier in two key measures: gaze duration and total time. These measures have been taken to reflect the time needed for initial word identification

(gaze duration) and to integrate the word into the sentence (total time). The results of these analyses revealed AZD9291 research buy a significant three-way interaction for both gaze duration (b = 11.95, t = 2.01) and total time (b = 19.93, t = 2.27), confirming our analyses above in suggesting that the effect of predictability did not increase in proofreading while the effect of frequency did. Thus, our data do not show support for an account of proofreading in which subjects merely read more cautiously (and predictability effects would likewise increase) but rather support a qualitatively different type of task-sensitive word processing between reading for comprehension and proofreading. As discussed in Section 1.3.1, when proofreading Epigenetics inhibitor for errors that produce real, wrong words, one must take into account the sentence context. Thus, one would expect that, when proofreading for wrong

word errors, subjects may need to or want to take into account the predictability of a word more fully than they do when proofreading for nonword errors (as in Experiment 1 and Kaakinen & Hyönä, 2010). We might expect, then, that if subjects can adapt how they process words to the fine-grained demands of the task, then when proofreading for errors that produce actual words, subjects would show larger effects of predictability. Presumably, this would result from subjects’ need to spend more time determining whether a word that is unlikely in context is an error. To test whether subjects adapt how they process words based on the precise nature of the spelling errors included in the stimuli, we ran a second experiment, similar to Experiment 1 except that, during proofreading, subjects checked for spelling errors (letter transpositions) that produced real, wrong words (e.g., trail produced trial; “The runners trained for the marathon on the trial behind the high school.”).

The paper concludes with a discussion of my perspective on how ge

The paper concludes with a discussion of my perspective on how geomorphologists can respond to the understanding that wilderness effectively no longer exists and that humans continually and ubiquitously manipulate the distribution and allocation of matter and energy. Water, water everywhere, nor any drop to drink. – Samuel Taylor Coleridge. Numerous papers published

during the past few years synthesize the extent and magnitude of human effects on landscapes and ecosystems. By nearly any measure, humans now dominate critical zone processes. Measures of human manipulation of the critical zone tend to focus on a few categories. (1) Movement of sediment and reconfiguration of topography. Humans have learn more increased sediment transport by rivers globally through soil erosion (by 2.3 × 109 metric tons/y), yet reduced sediment flux to the oceans GDC 0449 (by 1.4 × 109 metric tons/y) because of sediment storage in reservoirs. Reservoirs around the world now store > 100 billion metric tons of sediment (Syvitski et al., 2005). By the start of the 21st century, humans had become the premier geomorphic agent sculpting landscapes, with exponentially increasing rates of earth-moving (Hooke, 2000). The latest estimates suggest that >50% of Earth’s ice-free land area has been directly modified by human actions involving moving earth

or changing sediment fluxes (Hooke et al., 2012). An important point to recognize in the context of geomorphology is that, with the exception of Hooke’s work, most of these studies focus on contemporary conditions, and thus do not explicitly include historical human manipulations of the critical zone. Numerous very geomorphic studies, however, indicate that historical manipulations and the resulting sedimentary, biogeochemical, and topographic signatures – commonly referred to as legacy effects – are in fact widespread, even where not readily apparent (e.g., Wohl, 2001, Liang et al., 2006 and Walter and Merritts, 2008). Initial clearing of native vegetation for agriculture, for example, shows up in alluvial records as a change in river geometry in settings as diverse

as prehistoric Asia and Europe (Limbrey, 1983, Mei-e and Xianmo, 1994 and Hooke, 2006) and 18th- and 19th-century North America and Australia (Kearney and Stevenson, 1991 and Knox, 2006). The concept of wilderness has been particularly important in regions settled after the 15th century by Europeans, such as the Americas, because of the assumption that earlier peoples had little influence on the landscape. Archeologists and geomorphologists, in particular, have initiated lively debates about the accuracy of this assumption (Denevan, 1992, Vale, 1998, Vale, 2002, Mann, 2005 and James, 2011), and there is consensus that at least some regions with indigenous agricultural societies experienced substantial landscape and ecosystem changes prior to European contact.

The effective cation exchange capacity was calculated as a molar

The effective cation exchange capacity was calculated as a molar ratio of exchangeable Al (Ex-Al3+) to the sum of exchangeable Ca (Ex-Ca2+), exchangeable Mg2+, exchangeable sodium (Ex-Na+),

Ex-K+, and Ex-Al3+[15]. The Al saturation was calculated as Al/effective cation exchange capacity. The soils were also extracted using 0.1M Na-pyrophosphate (pH 10.0; soil ratio: extractant 1:100, with shaking for 16 h) for organic Al (Alp) [16]. The Al in the extract solution was measured in duplicates using an atomic absorption spectrometry equipped with graphite furnace Selleckchem Ipatasertib atomizer (PerkinElmer Analyst 700; PerkinElmer Inc., Norwalk, CT, USA). The data were statistically evaluated using the Data Dabrafenib ic50 Processing System 11.0 edition for Windows [17] (Zhejiang University, Hangzhou, China). Data are presented as the mean ± standard deviation. Analysis of correlation was performed with three replicates. Some studies have indicated that unbalanced cations and nutrition disorders have contributed to a decline in ginseng

garden soil conditions [1] and [18]. A measurement of the major cations was carried out seasonally. Both concentrations of Ex-Na+ and Ex-K+ stayed relatively constant without obvious spatial variation during 2009; however, they sharply increased in the 0–5 cm depth in the spring of 2010 (Fig. 1A–J). The exception was the decrease in both the Ex-Na+ and Ex-K+ in transplanted 1-yr-old ginseng soils in the spring, which might be driven by individual factors. The Ex-Ca2+ concentration showed a decrease within a 1-yr cycle of investigation (Fig. 1K–O). For transplanted 1-yr-old ginseng soils particularly, the Ex-Ca2+ concentration sharply decreased (-)-p-Bromotetramisole Oxalate in the three depths after the spring of 2009 (Fig. 1N). Although the Ex-Ca2+ concentrations in

the transplanted 2-yr-old ginseng soil were constant, a value of approximately 0.4 was the lowest of the detected Ex-Ca2+ concentration data (Fig. 1O). The exchangeable Mg2+ concentrations were kept relatively constant at the three soil depths for the different aged ginsengs within a 1-yr cycle (Fig. 1P–T). The NH4+ concentrations showed sharp decreases at all three depths from the spring of 2009 (Fig. 2A–E). The decrease was more remarkable in the summer and autumn. There were two obvious exceptions: the increase of NH4+ in the 0–5 cm layer for the 1- and 3-yr-old ginseng soils during the next spring (Fig. 2A,C), which might have been driven by individual factors. The surface (0–5 cm) NO3− concentration exhibited a remarkable increase in the summer and autumn, and then sharply decreased to the original level by the next spring (Fig. 2F–L). The NO3− concentrations in the 0–5-cm layer peaked in the autumn and were over 10-fold greater than those in the spring (Fig. 2F–L).

g , Kolbert, 2011) and among scientists from a variety of discipl

g., Kolbert, 2011) and among scientists from a variety of disciplines. Curiously, there has been little discussion of the topic within the discipline of archeology, an historical science that is well positioned to address the long term processes involved in how humans have come to dominate our planet (see Redman, 1999 and Redman et al., 2004). In organizing this volume, which grew out of a 2013 symposium at the Society of American Archaeology meetings held in Honolulu (Balter, 2013), we sought to rectify this situation by inviting a distinguished group of archeologists

to examine the issue of humanity’s expanding buy BMS-754807 footprint on Earth’s ecosystems. The papers in this issue utilize archeological records to consider the Anthropocene from a variety of topical or regional perspectives. The first two papers address general and global issues, including Smith and Zeder’s

discussion of human niche construction and the development of agricultural and pastoral societies, as well as Braje and Erlandson’s summary of late Pleistocene and Holocene extinctions as a continuum mediated by climate change, human activities, and other factors. Several papers then look at the archeology of human landscape transformation within specific regions of the world: C. Melvin Aikens and Gyoung-Ah Lee for East Asia, Sarah McClure for Europe, Anna Roosevelt for Amazonia, and Douglas Kennett and Timothy Beach for Mesoamerica. Later chapters again address global issues: from Torben Rick, Patrick Kirch, Erlandson, and Scott Fitzpatrick’s summary of ancient human impacts on three well-studied http://www.selleckchem.com/products/azd5363.html island archipelagos (Polynesia, California’s Channel Islands, and the Caribbean) around the world; to Erlandson’s discussion of the widespread post-glacial appearance of coastal, Miconazole riverine, and lake-side shell middens as a potential stratigraphic marker

of the Anthropocene; and Kent Lightfoot, Lee Panich, Tsim Schneider, and Sara Gonzalez’ exploration of the effects of colonialism and globalization along the Pacific Coast of North America and around the world. Finally, we complete the volume with concluding remarks that examine the breadth of archeological approaches to the Anthropocene, and the significance and implications of understanding the deep historical processes that led to human domination of Earth’s ecosystems. In this introduction we provide a broad context for the articles that follow by: (1) briefly discussing the history of the Anthropocene concept (see also Smith and Zeder, 2014); (2) summarizing the nature of archeological approaches to understanding human impacts on ancient environments; (3) setting the stage with a brief overview of human evolution, demographic expansion and migrations, and the acceleration of technological change; (4) and identifying some tipping points and key issues involved in an archeological examination of the Anthropocene.

Great Chazy joins the group of tributaries that show predominantl

Great Chazy joins the group of tributaries that show predominantly downward trends in flow-normalized concentrations. Predominantly upward trends in concentrations observed originally for the Little Ausable, Lamoille, and Missisquoi have become less prominent with the revised data. A cone-shaped pattern for flow-normalized N yields originally seen in Little Chazy and an upward trend in Missisquoi

are diminished with the revised analysis. The first sentence of the last paragraph in this section should change as follows: “For the period from 1990 to 2000, flow-normalized N concentrations increased in 15 [17] tributaries ( Fig. 5) and yields increased in 15 [16] tributaries (Appendix C). Changes to several numbers in the section “Aggregated phosphorus flux history” are presented here in italics, along with the original numbers in brackets. “Total gaged drainage showed a net decrease in P from Angiogenesis inhibitor about 738 [755] mt/yr in 1990 to about 722 [725] mt/yr in 2009 for a total reduction over the

monitored period of 16 [30] mt/yr (the maximum decrease was 46 [59] mt/yr between 1990 and 2005 [2004]). Tributaries that contributed most of the reduced flux into Lake Champlain between 1990 and 2005 see more [2004] were the Missisquoi (decrease of 24 [30] mt/yr or 38% of the decrease from the eastern drainage) and Winooski (decrease of 19 [28] mt/yr or 30 [35] %). In the section “Relating trends to management goals”, the first sentence should read as follows: “The reduction in P flux between

1990 and 2009 for the entire gaged part of the Lake Champlain basin illustrated in Fig. 6 was about 8 [15] % of the basinwide targeted load reduction of 202 mt/yr (Lake Champlain Steering Committee, 2003). The authors would like to apologize for any inconvenience caused. Fig. 2.  Annual and flow-normalized mean concentration and yield histories of total phosphorus (P) for 18 Lake Champlain tributaries from 1990 to 2009. Open circles show annual mean concentrations or yields based on model estimates of daily concentration and measured daily discharge and lines show flow-normalized annual mean concentrations or yields. Tributaries are listed in downstream order except for Pike River. Tributary 1990–20001 1999–20091 1990–20091 Table B1 Change2 in flow-normalized annual mean concentration mg/L %3 mg/L %3 mg/L Aprepitant %3 Great Chazy 0.016 48 0.005 11 0.021 63 Little Chazy 0.056 77 − 0.055 − 42 0.004 6 Saranac 0.003 17 0.001 4 0.004 21 Salmon 0.004 21 0.001 3 0.005 24 Little Ausable 0.027 50 − 0.025 − 31 0.003 5 Ausable 0.008 42 − 0.005 − 17 0.004 18 Bouquet 0.007 29 − 0.002 − 7 0.005 20 Putnam 0.004 30 − 0.002 − 13 0.002 15 Poultney 0.003 6 − 0.008 − 15 − 0.005 − 9 Mettawee − 0.001 − 2 0.002 3 0.001 2 Otter − 0.023 − 23 − 0.017 − 21 − 0.038 − 37 Little Otter <− 0.001 <− 1 − 0.009 − 10 − 0.009 − 9 Lewis 0.001 3 0.003 6 0.003 8 LaPlatte − 0.227 − 74 − 0.034 − 39 − 0.

As with the full dataset, it is difficult to determine the relati

As with the full dataset, it is difficult to determine the relative influence of different land use impacts on sedimentation because of high correlations between land use variables (Fig. 3) and a large proportion of model variance is associated with random effects by catchment (i.e. inter-catchment differences). With the best model containing both cuts_no_buf and cutlines_no_buf as fixed-effect variables (

Table 4), both forestry- and energy-related land use activities appear to cumulatively relate to rates of sedimentation. Few studies have previously examined the impact of natural gas extraction on watershed sediment click here transfer. Measurements of sediment erosion from well pads in Texas ( Williams et al., 2008 and McBroom et al., 2012) and an examination of water quality data in Pennsylvania ( Olmstead et al., 2013) have all related elevated fluvial sediments to the presence of gas wells. We also explored the potential influence

of interdecadal climate change in our modeling of lake sedimentation in western Canada. The importance of extreme hydroclimatic events on episodic sediment transfer www.selleckchem.com/products/Gefitinib.html is well established (e.g. Church et al., 1989), and many anomalous pulses of sedimentation in our study dataset have been attributed to specific floods (Spicer, 1999, Schiefer et al., 2001a and Schiefer and Immell, 2012). Contemporary climate change was proposed as an explanation for increasing sedimentation rates in some Digestive enzyme of the undisturbed study lakes, but

no associated empirical relations were explored. Effects of climate change were hard to discern in the global review of lake sediment records by Dearing and Jones (2003) because of the compounding and dominant effect of land use. In relatively undisturbed lake catchments in upland areas of Europe, generally increasing trends in sedimentation have been attributed to the likely influence of climate change, but controlling climate attributes remain uncertain (Rose et al., 2011). None of these large-scale studies attempted to quantitatively relate lake sedimentation patterns with longer term climate change (only individual extreme events). Our stepwise analysis with mixed effects modeling included multiple variables describing climate change over the last half century (Table 1). Best models for the entire catchment inventory and the Foothills-Alberta Plateau subset included climate variables temp_open and temp_closed, respectively. The two temperature variables are highly correlated, and model fits are negligibly affected when they are interchanged. Increasing temperatures, both in the open- and closed-water seasons, can be associated with elevated autochthonous or allochthonous sedimentation by increasing aquatic and terrestrial productivity, as well as potentially increasing the proportion of precipitation falling as rain.

g , the Seal Sands borehole is the deepest borehole in UK at 4194

g., the Seal Sands borehole is the deepest borehole in UK at 4194 m; the Kola Superdeep Borehole at 12,262 m is the deepest borehole in the world, whereas Sakhalin-1 at 12,345 m is the longest). Here, changes to the rock fabric include the drilling of the borehole itself, together with any associated caving-in of the hole, especially where

poorly indurated rocks are drilled. Ancillary changes include infiltration of drilling mud into porous rock, and the addition to the rock mass of any casing left in the hole. Boreholes are no longer simply vertical holes, but now may involve arrays of carefully directed low-angle or horizontal holes steered so as to fully exploit underground resources. Fig. 3 shows the ∼1 million Selleck Bcl-2 inhibitor boreholes in Great Britain colour-coded by depth (Fig. 4). By contrast with mining, the material extracted through boreholes is in fluid form (liquid or gas), Epigenetics inhibitor replacing oil, for instance by water drawn in from adjacent rocks (or with high-pressure carbon dioxide pumped down for sequestration or simply to enhance oil recovery). These changes to pore fluid composition may nowadays be tracked in real time with geophysical methods, and may be associated both with diagenetic mineralization and with topographic changes at the surface. A specific

variant is represented by the ∼1500 boreholes drilled in some restricted parts of the world for underground nuclear test explosions

(http://en.wikipedia.org/wiki/Nuclear_weapons_testing). The holes here are mostly obliterated by a rather larger trace, comprising a mass of strongly shock-brecciated rock surrounding a melt core (both these faces currently being strongly radioactive), commonly being surrounded by roughly circular fault systems, outlining surface crater systems that, in the Yucca Flats test site, reach several hundred metres across (Grasso, 2000 and NNSA, 2005). The Cannikin underground test on Amchitka Island in the Aleutian chain generated sufficient melt that, cooled and crystallized, is equivalent to a moderate-sized Inositol monophosphatase 1 volcanic lava dome (Eichelberger et al., 2002). Increasingly, storage facilities are being constructed in the subsurface, in many cases because it is considered a safer environment to store potentially dangerous materials. These storage facilities may be constructed specifically to hold the materials, or in many cases re-use existing caverns produced during mineral excavation. These facilities are used to temporarily store energy resources, e.g. Liquefied Petroleum Gas or compressed air energy storage, to provide long-term burial of hazardous wastes such as nuclear waste, CO2 sequestration, or the re-use of mined spaces such as halite for the safe preservation of records or armaments stores within a controlled environment.

All the experimental procedures were performed according to feder

All the experimental procedures were performed according to federal, state, and university regulations regarding the use of animals in research and approved by the Institutional Animal Care and Use Committee of Stony Brook University. Female Long Evans rats (275–350 g) served as the subjects in this study. Animals

were maintained on a 12 hr light/12 hr dark schedule and were given ad libitum access to chow and water, unless selleck compound otherwise specified. See Supplemental Experimental Procedures for surgical procedures and details on the implantation of electrodes and cannulae in GC and BLA and postoperative recovery. After the recovery time, rats were started on a water-restriction regimen (45 min of water/day). After they were Luminespib habituated to restraint conditions and to receiving fluids through IOC, subjects were progressively trained to wait for a period of at least 40 ± 3 s (ITI) and to press the lever at the onset of a 75 dB auditory tone. Rats had to press within 3 s after the tone to collect the fluid (ExpT); after the lever press (or 3 s), the tone stopped, and a new trial was started. Early presses were discouraged by the addition of a 2 s delay of the cue. During experimental sessions additional tastants were

delivered at random times near the middle of the ITI, at random trials and in the absence of the anticipatory cue (UT). Expected, self-administered, and UT were selected randomly. After the end of each experimental session, electrodes were moved at least 150 μm. Four basic tastants (100 mM NaCl, 100 mM sucrose, 100 mM citric acid, and 1 mM quinine HCl) were delivered

through a manifold of four polyimide tubes slid into the IOC (Fontanini et al., 2009). Computer-controlled solenoid valves pressure ejected ∼40 μl of fluids (opening time: ∼40 ms) directly into the mouth. A total of 50 μl of water was delivered as a rinse through a second IOC 5 s after the delivery of each tastant. Each tastant was delivered for at least six trials in each Florfenicol condition. Single-neuron action potentials and LFPs were simultaneously amplified, band-pass filtered (at 300–8,000 Hz for single units and 3–90 Hz for LFP), digitized, and recorded to a computer (Plexon, Dallas). Single units of at least 3:1 signal-to-noise ratio were isolated using a template algorithm, cluster-cutting techniques, and examination of interspike interval plots (Offline Sorter; Plexon). Oro-facial reactions were video recorded, and videos were synchronized with electrophysiological recordings. Rats implanted with injection cannulae were trained to perform the cued, self-administration paradigm. Once the rats were successfully trained, experimental sessions began. A total of 26 sessions were performed on 7 rats. Each session was divided into two sections: a pre-NBQX infusion, and post-NBQX infusion portion. See Supplemental Experimental Procedures for additional details on the experimental protocol.

, 2007; see Chédotal, 2011 for a review) Interestingly, DCC has

, 2007; see Chédotal, 2011 for a review). Interestingly, DCC has been shown to associate with the protein synthesis machinery and to regulate protein translation in axons ( Brittis et al., 2002; Tcherkezian et al., 2010). Therefore, a dysregulation of axonal protein synthesis following a failure of axon midline crossing could lead to expression changes of presynaptic proteins, and/or trophic factors relevant for the maturation of synapse function. It was shown recently that the absence of RIM1 and RIM2 proteins at the calyx of Held results in a marked reduction of presynaptic

Ca2+ currents, and a smaller fast-releasable vesicle pool ( Han et al., 2011). The variable Ca2+ current density and smaller vesicle pools observed here in Robo3 cKO mice are reminiscent of the RIM1/2

KO phenotype. LY294002 in vivo It is possible that the decreased presynaptic function of calyx synapses of Robo3 cKO mice is the consequence of reduced levels of RIM protein, or of other proteins involved in the functional organization of active zones ( Schoch and Gundelfinger, Akt inhibitor 2006). It is noteworthy that while functional maturation of Ca2+ channel-release coupling is well documented at the calyx synapse ( Chuhma et al., 2001; Fedchyshyn and Wang, 2005; Taschenberger and von Gersdorff, 2000), the underlying changes in presynaptic protein expression and/or post-translational changes of presynaptic proteins are largely unknown (but see Yang et al., 2010). We observed that the functional maturation of

most calyces of Held was defective in Robo3 cKO mice, while the initial formation of the typical calyx structure, despite a moderate synapse elimination deficit, was largely unchanged. Therefore, it seems that a program of morphological Interleukin-11 receptor growth of calyces was not strongly affected in Robo3 cKO mice. It has been shown that unilateral inner ear removal and the ensuing degeneration of the cochlear nucleus and denervation of the contralateral MNTB, leads to sprouting of GBC axons which can form ipsilateral calyces of quite typical morphology (Hsieh et al., 2007; Kitzes et al., 1995). In this denervation paradigm, a program of morphological calyx formation also seems to take place readily. Of note, denervation-induced ipsilateral calyces arise from axons that have already successfully crossed the midline. Therefore, ipsilateral calyces formed after denervation might show normal functional maturation, a possibility that should be tested in future work. The trophic factors and signaling molecules that drive the morphological development of the highly specialized calyx-type synapses, which are found on several levels of the lower auditory system (Grothe et al., 2010), are just beginning to be investigated (Nakamura and Cramer, 2011).